普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。优先队列具有最高级先出 (largest-in,first-out)的行为特征。
基本概念
抽象数据类型,优先队列的接口同前面讲到的队列的接口一样,是其基于泛型的API接口代码如下:
基于数组实现的优先队列
实现优先队列最简的方法就是基于前面讲到的基于数组的栈的代码,只需对插入或删除操作作相应的更改即可。
基于有序数组的实现
在栈的代码的插入方法中添加代码,将所有较大的元素向右移动一格,以保证数组有序(和插入排序相同),这里我们可以使用二分查找的方法来找出元素应插入的位置,然后再移动元素。这样最大元素,总是在数组的最右边,其删除操作和栈的实现中一样。
代码:
基于无序数组的实现
同样,我们一个可以在删除方法中修改,在删除方法中添加一段类似于选择排序内循环的代码,每次删除时先找出数组中的最大元素,然后与最右边元素进行交换,然后在删除元素。
代码:
基于堆实现的优先队列
基本概念:
- 当一个二叉树的每个结点都大于等于它的两个子结点时,我们称它是堆有序的。根结点是堆有序的二叉树的最大结点。
- 二叉堆是一组能够用堆有序的完全二叉树排序的元素,并在数组中按照层级存储。
一棵堆有序的完全二叉树:
为了操作方便,这是我们使用一个数组,来表示一个堆。我们不使用数组的第一个元素,具体实现在《树》中有提及,这里就不说了。
堆的有序化
当我们将元素插入到堆(数组的末尾)中时,插入的元素可能比它的父结点要大,堆的有序状态被打破。我们需要交换它和它的父节点来修堆,直到堆重新变为有序状态。其操作如下图:
代码如下:
同样的,当我们从堆中删除根结点并将它的最后一个元素放到顶端时,堆的有序性被打破,我们需要将它与它的两个子结点种的较大者进行交换,以恢复堆的有序性,其操作流程如下图:
其代码如下:
基于堆实现的优先队列
基于堆的优先队列的实现代码如下:
三种实现方法的时间复杂度比较:
索引优先队列
索引优先队列,它用一个索引数组保存了某个元素在优先队列中的位置,使得我们能够引用已经进入优先队列中的元素。最在些应用中,通常是很有必要的,如:有向图的Dijkstra算法中就使用了索引优先队列,来返回最小边的索引。
其实现方法为:
使用elements[]数组来保存队列中的元素,pq[]数组用来保存elements中元素的索引,在添加一个数组qp[]来保存pq[]的逆序——qp[i]的值是i在pq[]中的位置(即 pq[qp[i]] = i)。若i不在队列中,则令qp[i] = -1。辅助函数less()、swap()、sink()、swim()和前面优先队列中的一样。
索引优先队列的代码实现:
索引优先队列的时间复杂度:
总结
这里在堆排序中有很好的应用。